Application and Evaluation of Wavelet-Based Denoising Method in Hyperspectral Imagery Data

نویسندگان

  • Hao Yang
  • Dongyan Zhang
  • Wenjiang Huang
  • Zhongling Gao
  • Xiaodong Yang
  • Cunjun Li
  • Jihua Wang
چکیده

The imaging hyper-spectrometer is highly susceptible to the presence of noise and its noise removal is regularly necessary before any derivative analysis. A wavelet-based(WT) method is developed to remove noise of hyperspectral imagery data, and commonly used denoising methods such as Savitzky-Golay method(SG), moving average method(MA), and median filter method(MF) are compared with it. Smoothing index(SI) and comprehensive evaluation indicator(η) are designed to evaluate the performance of the four denoising methods quantitatively. The study is based on hyperspectral data of wheat leaves, collected by Pushbroom Imaging Spectrometer (PIS) and ASD Fieldspec-FR2500 (ASD) in the key growth periods. According to SI andη, the denoising performance of the four methods shows that WT>SG=MA>MF and WT>MA>MF>SG, respectively. The comparison results reveal that WT works much better than the others with the SI value 0.28 andηvalue 5.74E-05. So the wavelet-based method proposed in this paper is an optimal choice to filter the noise, in terms of balancing the contradiction between the smoothing and feature reservation ability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation

Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...

متن کامل

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

متن کامل

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

Can Wavelet Denoising Improve Motor Unit Potential Template Estimation?

Background: Electromyographic (EMG) signals obtained from a contracted muscle contain valuable information on its activity and health status. Much of this information lies in motor unit potentials (MUPs) of its motor units (MUs), collected during the muscle contraction. Hence, accurate estimation of a MUP template for each MU is crucial. Objective: To investigate the possibility of improv...

متن کامل

Land Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing

  The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011